
Expensive Java

“To what extent can Machine Learning decrease the expensive nature of Genetic Algorithms

when solving atypical optimization problems?”

Subject: Computer Science

Word Count: 3,942

May 2021

2

Table of Contents

Expensive Java 1

Table of Contents 2

Introduction 3

Genetic Algorithms: A competition for survival 5

The Coffee Problem: Implementing the GA 8
GA Design: Genome 9
GA Design: Population 11

Population Initialization 11
Crossover 12
Replacement 14

GA Design: Fitness Calculation 15
How Fitness is Calculated 15
The Polynomial Model 16

Experiment 18

Results 20

Conclusion 24

Bibliography 26

Appendix 27
GA Runs 27
Evolution of proportions between qC and qS 33
Code Extracts 34

3

Introduction

“The world runs on coffee”, although an exaggeration of the world’s dependency on the

caffeinated beverage, data from different countries’ consumption of coffee would suggest an ever

increasing demand for this drink; but does the coffee we drink truly taste good? This paper

attempts to examine whether Genetic Algorithms, a subset of optimization algorithms known as

global search algorithms, can be used to optimize qualitative and objective features such as taste?

Moreover due to the nature of Genetic Algorithms (GA), large quantities of data are required to

mimic the same evolutionary dynamics that are seen in nature [1]. The GA used in this paper

attempts to utilize Machine Learning in the form of polynomial regression to mitigate the

‘expensiveness’ of this algorithm. Thus this paper asks the question, “To what extent can

Machine Learning decrease the expensive nature of Genetic Algorithms when solving atypical

optimization problems?”. This paper provides a brief overview of the theory surrounding Genetic

Algorithms, and contextualizes the Genetic Algorithm in relation to “The Coffee Problem”.

Genetic Algorithms are most notably applied in scenarios where the fitness of an

individual’s strength can be described through mathematical formulas. This paper strives to

investigate the extent to which Genetic Algorithms can be applied to solve atypical optimization

scenarios where the fitness of an individual can not be determined through mathematical means.

Furthermore, the paper seeks to provide evidence in support of or against the versatility of

Genetic Algorithms and evaluate its effectiveness in reaching the optimized solution while

considering time constraints and efficiency.

4

As has been stated, this paper will focus on optimizing the desirability of a specific coffee

recipe. More importantly, the scope of the experiment has been limited to the use of the

following three ingredients: Water, Coffee, and Sugar; with the specific quantity of each

substance being the controlled parameters. Furthermore, due to the underlying conditions which

came as an effect of COVID-19, large scale experimentation could not occur and as a result

under the suggestion of my mentor, these tests were done in small data sets. Additionally, while

the results demonstrated by the Genetic Algorithm are demonstrative of its ability to solve

complex problems, there are limits that present themselves which must be discussed.

5

Genetic Algorithms: A competition for survival

There is a beauty in the way that nature handles failure. Darwin’s model of evolution

known as natural selection suggests that adaptation is fueled by the success and failure of

specific traits in an environment. Natural Selection as proposed by Darwin, brought forth an idea

that individuals in a population evolve as a result of the demands of their environment. Darwin

observed that finches whose diet was composed of small nuts and seeds had evolved in such a

way that their beaks could eat those specific foods with much more ease. Naturally one must ask,

what fuels evolution? Is it the failure of those finches who didn’t possess smaller, more agile

beaks? Or rather, the success of the finches who did? Understanding the fundamental relation

between the individual and the environment is paramount to creating an efficient GA (Genetic

Algorithm) that takes into account the success and failures of each solution. As stated by [1], “In

most cases… genetic algorithms are nothing less than the probabilistic optimization methods

which are based on the principles of evolution”.

The core of a Genetic Algorithm, lies in its ability to manipulate an individual’s genome.

A genome encodes the parameters and or variables that make the solution unique, commonly

genomes are also referred to as a combination of phenotypes and genotypes, but their purpose

and effect on the GA are the same: they allow the GA to interact with problem specific attributes

[2]. In a population, each individual follows the same blueprint for it’s genome, but the specific

values that are assigned to each gene are unique to the individual [1]. In the case of Darwin’s

finch, the genome blueprint is what made the finch a finch, but the specific genes in the genome

is what creates finches with different sized beaks, different claws, etc. The GA then applies a

6

process known as reproduction, where two genomes combine to make a child. The result of the

reproduction process, the child, allows for the inheritance of genes from its two parents which

provides a way for the algorithm to explore new data points in the search space [3]. Thus, by

favoring individuals with a higher fitness for the parents, the algorithm has a higher probability

to pass on the genetic material that makes the solution ‘good’.

Reproduction, also commonly referred to as crossover, can be done through various ways

such as through Uniform Crossover, One Point Crossover, Multi Point Crossover, etc [1], [4].

The process of selecting a parent can be done in many ways such as Stochastic Universal

Sampling, Fitness Proportionate Selection, Random Selection, etc. These different techniques

tackle the issue of approaching the optimum solution while maintaining diversity. Diversity in a

population is key as it has the effect of “preserving genetic diversity and, as an effect, that local

maxima can be avoided” [1]. Unfortunately, this same convergence behavior can occur before it

reaches the solution - this is known as premature convergence [5]. That is why GA’s implement

mutations to randomly incorporate diversity in populations [1], [5]. This can be done in many

ways such as, Bit Flip Mutations, Random Resetting, Swap Mutations, etc.

Each of the procedures described above allow the GA to mimic the way that species

evolve over time, but what allows these methods to work is the concept of fitness. In Darwin’s

finches, their fitness was connected to how well they were able to feed themselves as a result of

the shapes of their beaks. GA’s must find a way to describe how strong a specific genome can

perform in said environment. Oftentimes, this is done by creating a mathematical model that

describes variable interactions. This allows for the GA to run ‘unsupervised’ and is in most cases

the accepted method as it is both time and resource efficient. When this can’t be done fitness is

7

assigned in a supervised manner, leading to an increase in the time required to iterate through

one generation of the GA. In optimization algorithms, when the time or resources required to

compute fitness or cost is very high, these algorithms are known as expensive optimization

problems. They are expensive due to the fact that they require more manpower or money to

collect the same amount of data as an unsupervised method [4].

8

The Coffee Problem: Implementing the GA

The challenge in optimizing ‘taste’ is that there is no existing paradigm that describes

how the different quantities of each ingredient interact with our taste buds to create a flavor that

is enjoyable. This challenge is compounded by the individuality of our sense of ‘taste’ (i.e, one

person may like their coffee without sugar and someone else may like it with a lot of sugar). The

unpredictable relationship between how much of an ingredient there is in a recipe and its effect

on taste means that finding the ‘ideal’ recipe would mean traversing a large search space. GA’s

by design, are created to find the global optimum in large search spaces [1]. With that being said

because of the challenge in mathematically predicting taste, each recipe needs to be tested

individually in order to assign it a fitness. The GA used in this experiment is designed to actively

search for the optimum and employs a form of multivariate polynomial regression to decrease

the number of real trials needed to assign fitness. The following passages describe how this GA

was designed to fit the problem.

9

GA Design: Genome

The Coffee Genome is composed of two variables and ; which represent the𝑞𝐶 𝑞𝑆

quantity of Coffee and quantity of Sugar in grams respectively. and represent Genes,𝑞𝐶 𝑞𝑆

which have Alleles. The UML Diagram for each of the respective classes is provided below.

Figure 1.A (UML of Allele), 1.B (UML of Genome), 1.C (UML of Gene)

Figure 1.D (Visual Representation of Coffee Genome)

As is denoted by the UML Diagram, the individual Gene’s handle the mutation while the

Genome tells the gene when to mutate (as shown by the method mutateDriver in Genome class).

Furthermore, the individual genes have an allele object that holds the ‘value’. Although not

necessary, the allele object is created in order to maintain organization in the code and to allow

10

flexibility in the design of the GA. The last point of interest in the design of this Genome is the

GENES dictionary. This dictionary maps a key to the individual genes. Because the Gene class

itself has no identifier, the key in the dictionary is used to access the specific genes. In the case of

the Coffee Genome, and are the keys which reference the respective Genes. This is done,𝑞𝐶 𝑞𝑆

once again, for flexibility. The GA is designed such that the code may be reused regardless of the

specific variables needed for the genome.

11

GA Design: Population

The GA used in this paper initializes random individuals in a steady state population.𝑛

This is a type of population model that differs from a generational model, whose focus is on

replacing every individual in a population. The steady state model works by creating a child and

then swapping it for a member in the population. Below is a flowchart demonstrating the steps

that the GA undergoes. The specific steps are discussed in detail thereafter.

1) GA Start

2) Generate Random Population

3) Test a percentage of the population

4) Fit the polynomial model using the tested individuals

5) Assign a fitness to all members of the population:

a) Feed qC and qS to their polynomial model

b) Average the resulting fitness according to both

models

6) Perform Crossover

7) Replace Members using IFPS

8) Apply mutations where valid

9) Repeat from step 3 until termination condition

Figure 1.D (GA Flowchart)

12

Population Initialization

Random Initialization is done by copying the rootGenome, and in a sense forcing an

unconstrained mutation. The rootGeneome is provided by the experimenter as the blueprint for

the rest of the population. By starting from an already existing coffee recipe, the GA is able to

employ a heuristic approach to local search which maximizes computational cost. The graphs

below demonstrate the frequency distribution created from the random initialization of a

population.

Figure 2.A qS Histogram (Right), 2.B qC Histogram (Left)

The histograms for the and values demonstrate a ragged plateau distribution which is𝑞𝐶 𝑞𝑆

indicative of no clear pattern in the dataset. This is ideal when creating the random initialization

of the population to avoid any bias at the start of a GA run [150].

Crossover

When crossover is called, the GA selects two parents using Fitness Proportionate

Selection. FPS (Fitness Proportionate Selection) works by calculating the fitness of each

13

individual relative to the entire population [1]. This is done by dividing the fitness of the current

individual in a population by the total fitness of the entire population:

𝑃(𝑛) = 𝑓𝑖𝑡

𝑖=1

𝑁

∑ 𝑛.𝑔𝑒𝑡𝐹𝑖𝑡()

Figure 2.C (Equation for FPS)

Where represents an individual genome in the population , represents the fitness of the𝑛 𝑃 𝑓𝑖𝑡

current individual, and references the method found in the genome that is used to𝑛. 𝑔𝑒𝑡𝐹𝑖𝑡()

return the fitness. The following is a sample representation of how FPS can be used to select the

fittest individuals in a population. As is noted, 9 (light blue) and 7.4 (light red) are the

individuals with the highest fitness and largest slice of pie.

Figure 2.D (FPS Visualized)

Once the parents have been selected, the GA goes on to perform the actual crossover

method. In the case for this GA, Uniform Crossover was employed to maximize the chances of

14

each gene to be passed along to the generation [1]. Uniform Crossover gives each gene from

each parent an equal chance to be passed onto the child. The GA essentially assigns each gene

“heads” or “tails” (1 or 0). It then generates a random float using the inbuilt random.random()

method in Python. When the random float is between 0.0 and 0.50, it considers it as tails.

Likewise, when it is between 0.50 and 1.0, it considers it as heads. The chosen gene is then

passed on to the child, and this process iterates through each gene in the genome until a child is

created. The crossover operation, as stated by [1], is the reason why asexual reproduction, whose

diversity is dependent solely on mutation, fail to adapt at the same rate as sexually reproducing

species.

Replacement

Upon creating the child because the GA is modeled after a steady state algorithm the

number of individuals in the population must stay the same. As a result, the child can not be put

into the population, it must replace another genome. There are different routes that can be

chosen, but after doing some trial runs, it was experimentally determined that Inverse Fitness

Selection often led to earlier convergence of the population on the optimum. IFPS (Inverse

Fitness Proportionate Selection) involves a similar process as standard FPS, but instead it

continues the process by raising the relative fitness to the power of -1, and then dividing it by the

sum of all inverse fitnesses. IFPS favors those individuals with a lower relative fitness, and thus

allows the algorithm to replace those individuals whose performance is seen as less than optimal.

Furthermore, a generation gap is provided to control the amount of the population that will be

replaced. The closer the generation gap is to 100%, the more similar it becomes to a standard

generational population model and less of a steady state model.

15

Figure 2.E (IFPS Visualized)

GA Design: Fitness Calculation

GA’s require a lot of data, and due to the complexity and challenges of mathematically

modeling the interactions between ingredients, solving “The Coffee Problem” ideally would be

done under supervised conditions where experimenters rate the coffee recipe provided by the

computer. The problem is thus considered an expensive optimization problem, due to the time

and resources needed to perform all the tests. The solution proposed in this paper is then to select

a small percentage of the population to perform supervised testing. The data is then fed to a 4

degree multivariate polynomial regression model. Once the model is trained, the model is used to

fit the entire population.

How Fitness is Calculated

Originally, the fitness was going to be calculated through supervised large scale testing

by providing small samples of the coffee drinks to students at my school and allowing them to

rank them. The ranking system would work on a scale of 1 to 10 where 1 represents a non

16

desirable coffee and 10 represents a very desirable coffee. This method was already a very

expensive method, but with the introduction of COVID it created a challenge. In order to attempt

to simulate the same conditions, the problem was simplified to first principles. Having this in

mind, the fitness is calculated through the following formula:

10𝑥
𝑝

1.667 = 𝑦
𝑓𝑖𝑡

Figure 2.F (Fitness Calculation Formula)

Where represents the following ratio , represents the ideal ratio, represents the𝑥
𝑝

𝑞𝐶
𝑞𝑆 1. 667 10

ideal fitness, and represents the calculated fitness. This formula is used to simulate a human𝑦
𝑓𝑖𝑡

drinking a coffee and rating it in the testing stage of the GA. This data is then fed into the

regression model. Furthermore, the GA attempts to simulate human error by variating the final

fitness, , by up to 10%. This allows us to establish whether the model is able to correctly𝑦
𝑓𝑖𝑡

identify the optimum. This method does have inherent issues and will be discussed in later

sections.

The Polynomial Model

Due to the changing complexity of the code, the GA opts for a small adjustment to the

multivariate polynomial model. Essentially, both the and genes each have their own model𝑞𝐶 𝑞𝑆

which they train independent of each other. When a new genome is introduced, the individual

values of and are plugged into the model and the resulting fitnesses are then averaged𝑞𝐶 𝑞𝑆

together. This allows for the model to take into account both how genes independently change

17

the fitness, while also modelling their interactions. Additionally, the polynomial model is

allowed 4 degrees of freedom to prevent over and underfitting on sample datasets.

18

Experiment

The GA was initialized with a population of 80 individuals and a maximum number of

generations set to 50. Normally GA’s use much more than 80 individuals, but setting the

population to such a number allows rapid testing as well as keeps inline with the purpose of our

paper: testing the efficiency of ML imbued GA’s on abnormal expensive optimization problems.

Secondly, the amount of generations was set to 50 in order to provide a benchmark standard for

each trial run of the GA, but are normally much higher.

In order to find out which combination of parameters worked best, each run of the GA

utilized different parameters as outlined by the excerpt below (full datasheet in appendix):

Test Parameters Results

% of Population
Tested

% of Population
Replaced

Fitness Calculation
Method

Replacement Method Final Fitness

10.00% 90.00% Raw Fitness
Inverse Fitness Proportionate
Selection 6.769794497

Variation
Inverse Fitness Proportionate
Selection 6.783838243

Variation Random Replacement 3.514705011

20.00% 80.00% Raw Fitness
Inverse Fitness Proportionate
Selection 8.316485027

Variation
Inverse Fitness Proportionate
Selection 7.117840022

Variation Random Replacement 4.598995184

30.00% 70.00% Raw Fitness
Inverse Fitness Proportionate
Selection 8.132100881

Variation
Inverse Fitness Proportionate
Selection 8.498495062

Variation Random Replacement 6.36830118

Figure 3.A (Test Parameters Table)

19

As demonstrated by Figure 3.A, four main parameters were explored. The first parameter

as demonstrated by the first column of the table, focused on changing the percentage of the

population that was tested. This parameter was altered in order to test the effectiveness of the

polynomial regression model with a changing training set size. The second parameter focused on

changing the generation gap, that is to say, the number of individuals replaced by children in

each generation. Fitness Calculation was also changed using Variation and Raw Fitness.

Although fitness calculation has already been explored in an earlier section, a brief summary will

be provided. Fitness is calculated through a formula where the proportion of coffee and sugar in

an individual recipe is measured, multiplied by ten (the ideal fitness), and later divided by 1.667.

10𝑥
𝑝

1.667 = 𝑦
𝑓𝑖𝑡

The resulting fitness , then undergoes a variation. The variation is done to simulate human𝑦
𝑓𝑖𝑡

guess and provides random error into the calculation of the fitness. This is an attempt to

introduce uncertainty into the polynomial regression model in order to analyze its performance.

As shown by table above, certain GA runs remove this variation in order to see differences in

performance between the two. The final parameter, the replacement method, is used to test the

effectiveness of IFPS versus Random Replacement.

20

Results

Variated fitness with IFPS provided the best results for 89% of the population. Applying

variation seems counterintuitive as it trains the model on inaccurate data, but the data suggests

that applying 5% variation to the fitness allows the GA to explore a larger search space during

the initial generations while also maintaining genetic integrity. Furthermore, adding variation not

only has the benefit of increased search spaces, but also stopping early convergence while also

mimicking human error associated with supervised fitness models. Graphs demonstrating the

evolution of average fitness among each generation are shown below:

Figures 3.B, C, D, E (Generation vs Fitness Graphs)

21

The only place where variation failed to outperform raw fitness was in trial runs where the

percent tested was less than 20% of the population. This is most likely the case due to the lack of

information the model has to train with, compounded by the high replacement rate; which further

propagates the faulty information.

All 27 GA runs were able to reach convergence by the generation or the 800th10𝑡ℎ

individual; with the GA’s whose testing percentage was above 30% demonstrating a very rapid

convergence rate and maintaining said average throughout the entire 50 generations. The ability

to reach such high levels of convergence can be attributed to the increased accuracy of the model

as demonstrated by the following comparison:

Figure 3.F, G (Generation vs Fitness Graphs)

On the topic of convergence, it can be noted that the GA’s that utilized variation as well as

replacement were unable to converge and in the worse scenarios, as demonstrated by Figure G

(10% - 90%), led to a net loss in population fitness. Making an inference from the data gathered

suggests that random replacement of children from crossover leads to the elimination of

members in the population that contribute above average genes. Likewise, too much diversity in

22

a population can cause the GA to “behave chaotically like a random search” [1]. While this is

still possible in IFPS, it has a far lower chance of occurring. A possible way to circumvent early

convergence or a lack thereof when using Random Replacement is through implementing

Elitism. Elitism ensures the survival of the most elite members of the population, at the cost of

being more prone to early convergence. As [6] suggests, low Elitism values combined with

Random Replacement can be beneficial to reaching the optimum at a faster pace. Furthermore,

Elitism has the effect of slightly combatting the increasing number of iterations naturally

encountered when using purely probabilistic search techniques [7].

Finally, because the GA was designed to attempt and find the best proportion of Coffee

and Sugar it would make sense to analyze how the proportions changed over time through each

generation.

Figure 3.H, I (Evolution of Proportions between qC and qS each Generation)

The graphs above would suggest that when using a more accurate model, the GA’s population is

able to converge on the ideal solution with quick speed while the least fit model fails to converge

on the ideal optimum. Furthermore, while mostly all GA runs were able to converge on the same

proportion, each population had differing values for their qC and qS genes. Although it is

23

assumed that the amount of water stays the same, the GA’s ability to find different manifestations

of the same solution highlights the GA’s flexible nature.

24

Conclusion

“The enormous potential of GA’s lies elsewhere - in optimization of non differentiable or

even discontinuous functions, discrete optimization, and program induction”

- U. Bodenhofer

There is a beauty in the way that nature handles failure. Evolution it may seem, favors the

strong, but failure is the currency for success and thus, the natural push and pull between strong

and weak that fuels nature’s evolutionary process shows us that there can be no success without

failure. Understanding this relationship is paramount to designing an ideal Genetic Algorithm.

Firstly, it’s the environment that dictates who fails and who succeeds. Secondly, it’s important to

understand that failure and success are relative to each other. An optimal solution may work, but

as the environment’s demand changes so does the solution.

Analyzing the results of our experiment it would appear that GA’s can be used to find

optimums given their environment. The GA as it was used in this paper, succeeded in converging

on our assumed proportion of 1.667. It further demonstrated that the use of polynomial

regression for fitness calculation can aid in decreasing the computation cost of assigning

fitnesses to population’s with many members while avoiding overfitting and underfitting. What

this GA fails to prove however, is whether GA’s can be used to solve atypical and expensive

optimizations problems whose fitness calculation can’t be determined through mathematical

means. Due to the circumstances, I was not able to do the testing that I would’ve preferred, but

there is hope in the use of machine learning techniques to decrease the computational cost. This

paper also determined that an increase in the data used to train the model as well as a

25

generational gap of around 40% allows the GA to maintain a healthy balance between genetic

diversity and rate of convergence. Moreover, the importance of diversity in a population is key in

the beginning phase to ensure that there is no bias in the starting population.

GA’s are very useful when analyzing complex problems, but it is important to understand

that the GA performs just as well as the environment it's subjected to. When GA’s are designed

thoughtfully and the fitness function through to the specific parameters are chosen to fit the

problem; GA’s are able to traverse search spaces to find the relative optimums. It must be noted

once more that GA’s do not inherently learn, they mimic a system designed to improve upon

relative failures. With the implementation of machine learning, however, GA’s are provided with

the ability to possess an intuitive like comprehension of what is fit and unfit. The combination of

instinct (Genetic Algorithms) and intelligence (Machine Learning) prove to be efficient at

decreasing computational cost of GA’s while also showing promising results for solving

expensive atypical optimization problems.

26

Bibliography

[1] U. Bodenhofer, “Genetic Algorithms: Theory and Applications” 2002

[2] D. Jong, and A. Kenneth, “Evolutionary Computation: A unified approach” 2006

[3] H. Randy, and S. Haupt, “Practical Genetic Algorithms” vol. 2, 2006

[4] J. Koza, “Genetic Programming: On the Programming of Computer by means of Natural

Selection, 1992.

[5] D. Whitley, “A genetic algorithm tutorial,” Stat Comput, vol. 4, no. 2, pp. 65–85, Jun.

1994.

[6] R. Pursehouse, P. Fleming, “Why use Elitism and Sharing in a Multi-Objective Genetic

Algorithm,” University of Sheffield, Jul. 2002

[6] B. Chakraborty, “On The Use of Genetic Algorithms with Elitism in Robust and

Nonparametric Multivariate Analysis,” Australian Journal of Statistics, vol. 32, no. 1 &

2, pp. 13 - 27, 2003.

27

Appendix

GA Runs

Test Parameters Results

% of Population
Tested

% of Population
Replaced

Fitness Calculation
Method

Replacement Method Final Fitness

10.00% 90.00% Raw Fitness
Inverse Fitness Proportionate
Selection 6.769794497

Variation
Inverse Fitness Proportionate
Selection 6.783838243

Variation Random Replacement 3.514705011

20.00% 80.00% Raw Fitness
Inverse Fitness Proportionate
Selection 8.316485027

Variation
Inverse Fitness Proportionate
Selection 7.117840022

Variation Random Replacement 4.598995184

30.00% 70.00% Raw Fitness
Inverse Fitness Proportionate
Selection 8.132100881

Variation
Inverse Fitness Proportionate
Selection 8.498495062

Variation Random Replacement 6.36830118

40.00% 60.00% Raw Fitness
Inverse Fitness Proportionate
Selection 8.543198166

Variation
Inverse Fitness Proportionate
Selection 8.678782956

Variation Random Replacement 7.514350123

50.00% 50.00% Raw Fitness
Inverse Fitness Proportionate
Selection 8.367762684

Variation
Inverse Fitness Proportionate
Selection 8.771017873

Variation Random Replacement 6.697637303

28

60.00% 40.00% Raw Fitness
Inverse Fitness Proportionate
Selection 8.3441877

Variation
Inverse Fitness Proportionate
Selection 8.886959035

Variation Random Replacement 7.280078897

70.00% 30.00% Raw Fitness
Inverse Fitness Proportionate
Selection 8.085179135

Variation
Inverse Fitness Proportionate
Selection 8.453228255

Variation Random Replacement 6.872273834

80.00% 20.00% Raw Fitness
Inverse Fitness Proportionate
Selection 8.793699696

Variation
Inverse Fitness Proportionate
Selection 8.84999268

Variation Random Replacement 5.703019224

90.00% 10.00% Raw Fitness
Inverse Fitness Proportionate
Selection 8.107028248

Variation
Inverse Fitness Proportionate
Selection 8.559849021

Variation Random Replacement 7.908203991

29

Testing 90% | Replace 10%

Testing 80% | Replace 20%

Testing 70% | Replace 30%

30

Testing 60% | Replace 40%

Testing 50% | Replace 50%

Testing 40% | Replace 60%

31

Testing 30% | Replace 70%

Testing 20% | Replace 80%

Testing 10% | Replace 90%

32

33

Evolution of proportions between qC and qS

Best Case

Worst Case

34

Code Extracts

Random Member Creation

Crossover Method

35

Parent Selection

36

Replace for Death

37

Select For Testing

